

Malmö University

Programming Using C#, Basic Course

Assignment 6b
OOP - Inheritance

Universal Calculator

Mandatory (for VG or A, B)

Farid Naisan

University Lecturer
Department of Computer Sciences

Malmö University, Sweden

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 2(12)

Assignment 6- Inheritance
1. Objectives
In the last module, we practiced with the first of the three important aspects of OOP, encapsulation. Now it is time to move forward and try the next
concept, inheritance. Object inheritance helps to reuse code by creating a ”is a” relation between objects of same type. The following topics are
covered in this assignment:

 inheritance techniques in C#,
 a couple of new Form controls, the TabControl and the ImageList control, and

2. Description
Computation of geometrical shapes, areas and volumes,
conversion between different currencies and so on are tasks
that we need in our everyday life. To make life easier, we will
write a program where we can gather all such simple but
useful calculations. In this assignment we will try to design and
implement a part of this idea. We begin with the calculation of
the geometrical shapes, volumes, surface areas (mantel
areas, Swedish (SV: sidoytan) and periphery (SV: omkrets) of
some standard shapes.

Write a program that calculates the circumference (SV: omkrets) and area of a
rectangle, circle and ellipse as well as the volume and the mantel area of a prism,
cylinder and a sphere.

The figure below presents a suggested GUI and a sample program. For the purpose
of this assignment, it is sufficient to work only on the Shapes-tab, as the mandatory
part, (se the figure below) and ignore the other ones.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 3(12)

3. Requirements and grading:
This assignment will be graded as VG, G or A,B, C (ECT) or will be subject to complementary work and resubmission.
3.1 The program must work satisfactorily as in the last assignment.
3.2 All class definitions, and class methods are to be documented using a XML-compatible format.
3.3 Auto-implemented properties (e.g. public string Name { get; set; }) are not allowed in this assignment. Put some control of the

“value” in the set-properties to control its validities, wherever applicable.

3.4
3.5 You are expected to seriously apply encapsulation and inheritance. Do not use your own setter and getter methods; use properties instead

whenever access to an instance variable is necessary. The instance variables that need not to be accessed require no property.
3.6 Use a TabControl with a couple of tabs (for training). Your work will be concentrated only in one of the tabs as only the shapes tab is the

obligatory part of this assignment.

3.7 The shape-pictures in this document are downloadable as image

files from the Module. Save the images in a sub-folder in your
project.

3.8 Use an ImageList control on the form and name it for example

imgShapeList. The conrol will residet at the bottom part of the form
as this is an “invisible” control like the Timer control. Go to the
Property Window for this control and click on the Collection item.
Use the Add button, browse to the sub-folder where you have saved
the images and open a file. Do this for all images. Note that the
image files are saved in at least two formats, jpg and png. ImageList
supports several image formats.

3.9 Note that after putting the image files into your project, you don’t

need the files anymore, and in case you make any changes in the
files, you have to remove the corresponding item from your
ImageList and add the file again. The images will be embedded into resx file.

3.10 Use a PictureBox control to which a picture from the ImageList will be attached based on the user’s choice of the shape. The PictureBox has

a property named Image. If you have saved the images in the same order as the contents of the shape-ComboBox, you can use the
following simple statement to show the correct picture:

 picShape.Image = this.imgShapeList.Images[cmbShape.SelectedIndex];

1

2

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 4(12)

4. The Project
For your convenience, a sample project and a class diagram are presented in the following figures. The project
figure show how you can organize your classes in a logical and physical groups. To create the folder ShapeFiles,
right-click on the project (UniversalCalc) and then select Add - New Folder. To create the sub-folders 2D and 3D
folder, right-click on the ShapeFiles and add new folders. When you add a new class in a folder, right-click on the
folder name and then select Add – Class.

When you add a new folder in the Project Explorer (logical structure), VS creates the folder with the same
hierarchy on your harddrive (physical structure). Organizing files and components in a project is a part of good
programming style.

5. Class Diagram
The class diagram below illustrates how the classes are associated with each other, as far as inheritance is
concerned.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 5(12)

Actually each of the 3D classes, Sphere, Prism and Cylinder can declare an instance of the Ellipse, Circle and Rectangle classes, respectively, for
its base shape. For example, en cylinder has an ellipse as its base. In this case an object of the cylinder class has an aggregation relationship with
an object of the Ellipse class. It is said to have a “has a” relationship. The model below displays even the aggregation relationships.

Think:

A Cylinder is a Shape3D

A Cylinder has an Ellipse

Aggregation: ”has a” relation

Inheritance: ”is a” relation

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 6(12)

6. The Shape class (Shape.cs)
6.1. This class defines shapes in general. It can contain fileds as name, pen color, pen thickness,etc, and methods that are common for all

shapes in the program. It will serve as a base class for all the geometrical shapes. In this assignment, only one field and a minimum
number of methods are used.

6.2. Note: It is more suitable to write this class as an interface type, but the subject is not within the scope of this course.

6.3. Fields: Declare a private field, shapeType, for defining the type of the figure which can be suitabley defined as a public enum and

can be saved in the same file as Shape.cs.

6.4. Constructors: Write a default constructor and let the shapeType variable have a default value Shapes.Rectangle.

6.5. Properties: get, set for shapeType.

6.6. Methods:

6.6.1. Write a method which returns true if the figure is a three-dimensional shape (Prism, Cylinder, Sphere) and false otherwise.

6.6.2. Override the ToString method to return a string formatted with the name of the shape.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 7(12)

Note: Shape is a class and Shapes is an enum

7. The Shape2D class (Shape2D.cs)
The Shape2D class inherits the Shape class and is to serve as a base class to all two-dimensional
figures. Normally, it is better to define such a class as an abstract class but this subject is not a part of
this course.

Fields: maxWidth (width) and maxHeight (heigt) of the bounding rectangle.

7.1. Constructors: write a constructor that takes maximum width and maximum height of the shape
as parameters.

7.2. Properties: get, set functions for both of maxWidth and maxHeight.

7.3. Methods: Write a method GetArea which returns the product of maxWidth and maxHeight.
Declare this function as virtual in order to make it possible for the sub-classes to override it, if necessary. You may have guessed from
this discussion that virtual and override is a pair of modifiers that makes overriding possible. – use virtual in base class and ovveride in
the sub-class with the metodh that you want to make overridable. What is overriding, by the way? The mehod ToString is virtual in its
base ckass (object) in the .NET Framework.

8. The Rectangle class (Rectangle.cs)
8.1. The Rectangle class inherits the Shape2D.

8.2. Fields: none.

8.3. Constructors: write a constructor that takes width and height of the shape as
parameters. Set the shapeType of the base class to Shapes.Rectangle in the
constructor. Note that the base class’s constructor must be called.

8.4. Properties: get properties for the area and circumference of the shape returning a double value.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 8(12)

9. The Ellipse class (Ellipse.cs)

9.1. The Ellipse class inherits the Shape2D. This class defines both circles and ellipses.

9.2. Fields: none.

9.3. Constructors:

9.3.1. Write a constructor that takes the horizontal and vertical radius of the ellipse as
inparameters. For a circle, these two values are equal. Meanwhile, two times
the redius gives the
side of the enclosing rectangle. Set the
shapeType of the base class to Shapes.Ellipse in the constructor.

9.3.2. Write another constructor with only radius as inparameter. This constructor can be called when creating a circle. Mek sure
that the base class gets correct values for the maxWidth and maxHeight. Set the shapeType of the base class to
Shapes.Circle in the constructor.

9.3.3. Properties: get properties for the area and circumference of the shape returning double values.

9.3.4. It must be pointed out that there isn’t any simple way to calculate the circumference and area of an ellipse, but the following
formulas can be used in this program:

circumference = 2*PI*sqrt((a2+b2)/2)

area = PI * a * b

maxWidth = 2 * a

maxHeight= 2 * b

where a and b are the radius in the x- and y-directions respectively. The formulas are valid for a circle as well setting a = b.
Please make sure to avoid using short variable names as in the the formulas when programming. You can choose names
like xRadius, yRadius instead of ‘a’ and ‘b’.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 9(12)

10. The Shape3D class (Shape3D.cs)
10.1. The Shape3D class inherits the class Shape and is the base class to all the three-dimensional figures. Normally, it is better to define

even this class as an abstract class but the subject is outside the scope of the course.

10.2. Fields: a double variable, length, for storing the value of the z-dimension of the 3D shape.

10.3. Constructors: a constructor with length as an in-parameter.

10.4. Properties: get and set properties for the length field.

10.5. Methods: none.

11. The Prism class (Prism.cs)
11.1. A prism is also called a rectangular solid or a cuboid. This class being a 3D figure inherits the class

Shape3D.

11.2. Fields: baseShape of the Rectangle class type.

11.3. Constructors: Write a constructor that takes the width, height and length of the prism as in-parameters. Set the baseShapes values
and pass the value of the shape’s length to the base class’s length field.

11.4. Properties: Write the following get-properties:

11.4.1. A property that returns the volume of the prism.

volume = baseArea * length

baseArea = a * b (i.e the area of baseShape)
11.4.2. A property that returns the mantel area (area of the sides) of the prism.

mantelArea = cirmferenceOfBaseShape * length
11.4.3. A property that returns the total surface area of the prism.

totalArea = mantelArea + 2*baseArea

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 10(12)

11.4.4. A property that returns a copy of the baseShape object (explained in earlier assignments).

11.4.5. Call methods from the baseShape to calculate the base shape’s circumference and area.

12. The Cylinder class (Cylinder.cs)
12.1. A cylinder occurs in many forms but here we consider only those which have a circular or

elliptical base shape as shown in the figure. It is like a prism but has an elliptical base shape.
This class inherits the class Shape3D.

12.2. Follow the steps as instructed for the prism and write the class in the same manner.

12.3. All the prism formulas for volume, mantelArea and the totalArea given above apply even for
the Cylinder.

13. The Sphere class (Sphere.cs)
13.1. A sphere is a boll-shaped object. This class should also inherit the Shape3D class.

13.2. Use the same procedure to write this class using the following formulas:

 volume = 4/3*Pi*radius3 = 4/3 * baseArea * radius

 mantelArea = 4*Pi*radius2 = baseArea * 4

 totalArea = mantelArea

13.3. To program radius3, you can use the following statement:

Math.Pow(radius, 3)

but it is better to use radius*radius*radius as it is faster and more exact.

13.4. The value of PI is also given in the Math class Math.PI.

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 11(12)

14. The FormMain class (FormMain.cs):
14.1. When the user presses the “Calculate” button, the type of the shape is determined and the necessary input is given. The shape type

and the input need not to be remembered between the calculations. Therefore, the chosen shape object can be declared and created
as a local variable in the method which starts the calculation and there is no need to declare a field variable of this type in the
FormMain.

14.2. Fields: none.

15. Hints
15.1 To fill a ComboBox with values from an enum, you can use the

structure Enum. The following example shows this and also how
you can select an item in the combobox.:

To map the selected item to an enum:item, you use type casting as
illustrated in the code example below:

15.2 You can use dynamic binding (or late
binding) : To create an object of the
selected type (Rectangle, Circle, etc), you
can proceed as shown in this code
example here.

Type casting

 Programming Using C#, Basic Course Assignment 6b

© Farid Naisan 12(12)

15.3 Dynamic binding is actually a type of
polymorphism, so let’s keep that for the
Advanced Course. You can use the structure
illustrated in the code snippet at the right.

Good Luck!
Programming is fun. Never give up. Ask for help!

Farid Naisan
Course Responsible and Instructor

Note: Both Area and Circumference are
codded as properties in these examples,
but you can write them as ordinary
methods.

